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Abstract. We analyze the epidemic spread via a contact infection process in an immobile population
within the Susceptible-Infected-Removed (SIR) model. We present both the results of stochastic simula-
tions assuming different numbers of individuals (degrees of freedom) per cell as well as the solution of
the corresponding deterministic equations. For the last ones we show that the appropriate system of non-
linear partial differential equations (PDE) allows for a complete separation of variables and present the
approximate analytical expressions for the infection wave in different ranges of parameters. Comparing
these results with the direct Monte-Carlo simulations we discuss the domain of applicability of the PDE
models and their restrictions.

PACS. 87.23.Cc Population dynamics and ecological pattern formation – 87.10.Ed Ordinary differential
equations (ODE), partial differential equations (PDE), integrodifferential models – 87.10.Mn Stochastic
modeling

1 Introduction

In a century after the first publication on mathematical
theory of epidemics by Ross a lot of work has been done
devoted to the description of disease spread in a popula-
tion, see [1] for a comprehensive review. One of the sim-
plest, useful and popular models is the SIR scheme. It
describes a population consisting of three kinds of indi-
viduals, namely the susceptible (S), the infected (I), and
the recovered/removed (R) ones. The transitions between
these states are governed by the infection transmission
rate κ and the characteristic recovery time τ :

S
κ→ I

1/τ→ R.

There exist various implementations of this scheme which
correspond to different assumptions about the spatial
structure of population and its mixing dynamics. For ex-
ample, the the Kermack-McKendrick model (KMcK) [2]

dS

dt
= −κSI, (1)

dI

dt
= κSI − 1

τ
I, (2)

dR

dt
=

1
τ
I, (3)

assumes perfect mixing, which completely eliminates a
spacial aspect of behavior. To take mobility into account,
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the Fisher-Kolmogorov-Petrovsky-Piskounov (FKPP)-like
models [3,4] add diffusion terms to the right-hand-sides of
equations (1–3). Kendall [6] proposed a different approach,
namely, using a spatially averaged concentration of in-
fected 〈I(x)〉 around the spatial point considered instead
of the local I(x) in the reaction terms of equations (1−3).
The Taylor expansion of this average up to the second
term leads then to the following system of equations:

∂S

∂t
= −κSI − DS

∂2I

∂x2
, (4)

∂I

∂t
= κSI + DS

∂2I

∂x2
− 1

τ
I, (5)

∂R

∂t
=

1
τ

I (6)

(where we confine ourselves to a one-dimensional nota-
tion), with D/κ denoting the second Taylor’s coefficient,
provided that the first one vanishes. For the review of this
and similar approaches see also the references [7,8]. Under
the corresponding choice of parameters the variables S,
I and R can be interpreted as the probabilities for an
individual to be susceptible, infected or recovered, which
means that since the sum S + I + R is conserved, this
sum can be put to unity. The probability for a cell to be
infected can only change in case the cell is susceptible and
depends on the number of its infected nearest-neighbors.
One of the particular realizations of this model was consid-
ered in [9] discussing disease propagation through a pop-
ulation of individuals which are either immobile or show
a high degree of site fidelity.

http://dx.doi.org/10.1140/epjb/e2008-00291-9
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The main goal of the present paper is a further anal-
ysis of the deterministic equations (4–6) as well as the
Monte-Carlo simulations of the corresponding stochastic
model taking into consideration other aspects of the prop-
agation process. This one is a generalization of the models
of references [10,11], related to percolation, in which we
now allow for more than one individual per site. The com-
parison of predictions of the deterministic model with the
results of the simulations of the stochastic one allows to
discuss the details of transition from the microscopic to
the macroscopic level of description and to determine the
area of applicability of the deterministic approach.

2 Monte-Carlo simulations

Let us first turn to simulations of infection spread through
the population distributed over the patches (cells), which
include various numbers of individuals. It is a natural step
to determine an appropriate level of coarse-graining which
admits the continuous description via PDE system.

2.1 Model

We consider the SIR-system on a 2D square lattice of
Nx×Ny sites with the lattice spacing a and cyclic bound-
ary conditions. For simplicity, the columns and the rows
of the lattice are marked by x and y considered at the
beginning as whole numbers. It is admitted that each cell
includes a variable number r of individuals, i.e. internal
degrees of freedom. The transmission of infection through
the whole system is only due to interaction between indi-
viduals from next-neighbor cells. This leads to the refine-
ment of a disease grade with the growth of the number r
of internal degrees of freedom (individuals per cell). The
possibility of infection transmission within the cell is dis-
regarded in our simulations, which makes it unnecessary
to renormalize the infection rate κ with the number of the
degrees of freedom. In this case the number r corresponds
simply to the degree of coarse graining of the description.
The possibility of infection within one cell only leads to
the effective renormalization of parameters of the corre-
sponding model.

Quantitatively, the probability of infection pI for a sus-
ceptible summed over all orientations is

pI = Δt
(
1 − (1 − κ/4)

∑
INN

)
, (7)

where κ/4 is a probability of infection transmission from
the next-neighbor cell during the time interval Δt and

∑
INN = I(x + a, y) + I(x − a, y)

+ I(x, y + a) + I(x, y − a).

The probability pR for an infected to be removed during
Δt is

pR =
1
τ

Δt (8)

Fig. 1. S(x, y) for r = 1 (upper panel) and for r = 5 (lower
panel) for t = 500. The degree of infection in a cell us shown
on the grayscale: black S = 0, white S = 1.

and the normalization condition I(x, y) + R(x, y) +
S(x, y) = 1 is applied. The time step Δt is chosen small
enough (Δt/τ = 0.005, where τ is again the characteristic
recovery time).

Initially, at t = 0, the completely infected (I(0, y) = 1)
cells are distributed along the first column of the lattice.
All other cells are susceptible S(x, y) = 1 for all x �= 0.
Cyclic boundary conditions are adopted. After several pre-
liminary (parallel) updates, we get a stable propagating
front of infection. Its motion is described by the projec-
tion on the x-axis via the column average

I(xi(t)) =
1

Ny

Ny∑
i=1

I ′(xi, yi, t). (9)

To determine the front’s velocity we look at the position
of its center of mass

〈x(t)〉 =
∑

i I(xi(t))xi(t)∑
i I(xi(t))

and define the velocity as

vcm =
Δ〈x(t)〉

Δt
.

Figure 1 shows the snapshots of the propagating infection
front for two different values of r.

2.2 Simulations in 1D

Since our further analysis is mostly pertinent to a one-
dimensional case, we start here from presenting the situa-
tions for the one-dimensional lattice. To consider a limit-
ing transition to the case of very large number of internal
degrees of freedom (i.e. individuals per cell), we simu-
late the spread over 1000 × 1 lattice. Figure 2 represents
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Fig. 2. The shape of the infection wave in 1D together with
some analytical approximations for κτ = 5 and r = 2000. The
dots are the results of simulations as averaged over 500 runs.
The dashed lines are the exponential leading edge and far tail
approximations, while the dotted and the solid lines give the
non-exponential analytical approximations for the front and
wake of the infection wave, see Section 3.

the form of the spreading wave for the simulation with
r = 2000 (dots) and κτ = 5 and its comparison with dif-
ferent analytical results. The full-range approximations of
front and tail from Sections 3.2 and 3.3 are shown with
solid lines, and the exponential behavior in far tail re-
gion and in the leading edge [9] are shown with dashed
lines. One readily infers that the analytical approxima-
tions based on the solution of the PDEs give a very good
description of the overall form of the wave as both its
shape and its maximum height are concerned. The leading
edge and the far tail behavior are adequately captured by
exponential asymptotics. The corresponding calculations
are based on the front propagation velocity as given by the
marginal stability principle, which proves that the overall
continuous description in 1D is valid for such a large num-
ber of individuals per cell.

Now let us consider the dependence of the infection
wave’s properties on this number and first concentrate on
the velocity of the wave as a function of the number of
individuals per cell. In this case the discreteness of the
system plays a role and the propagation velocity is typi-
cally slower than the one given by the continuous treat-
ment (see e.g. [12–14]). This behavior can be also seen in
the stochastic FKPP equation [15]. In the 1D case, Brunet
and Derrida [16] introduced a cutoff of the local concen-
tration h ≥ 1/r for the FKPP-type equations and found
the lowest order correction vr to the velocity v0:

vr � v0 − b

(ln r)2
for 1/ ln r � 1 (10)

with some constant b. The lower panel of Figure 3 clearly
shows this overall kind of behavior, however, the extrapo-
lation of the corresponding straight line to r → ∞ gives as

Fig. 3. Mean velocity as the function of the number of states
per cell. Upper panel: linear scales; lower panel: vr as a function
of 1/ ln2(r). The dashed line in the upper panel denotes the

limiting velocity vmin = 2
√

D(κ − τ−1).

Fig. 4. The infection wave for κτ = 6 and r = 200. Shown is
the concentration of infected on the grayscale.

a result the value of asymptotic velocity somewhat higher
than the one given by the continuous approximation. The
reason can be the finite simulation time, but still has to
be analyzed in detail.

2.3 Wave’s shape in 2D

In Figure 4 the spread of the infection wave is plotted
for κτ = 6 and r = 200 – the front of the wave is quite
rough, and one has to decide how to take this roughness
into account and how to eliminate its effect on the results
for the velocity and for the form of the front.

The simplest possibility is the projection of the whole
wave’s profile onto the x-axis (9) and then an averaging
over K runs of the simulation with a “cut and shift” of
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Fig. 5. The shape of the infection wave for different numbers
of states per cell under global averaging, κτ = 6. The symbols
correspond to the simulations with r = 1 (diamonds), r = 5
(crosses), r = 10 (asterisks) and r = 200 (dots). The solid line
represents the analytical result from the PDE solution.

the infected at every run k in such a way that the position
of the rightmost infected in each run coincide:

〈I(xf − xi)〉K =
1
K

K∑
k=1

I(xf,k − xi). (11)

The “cut and shift” prescription is necessary to avoid in-
fluence of velocity fluctuations. Here xf,k is the position of
the foremost infected in the k-th run, which is shifted to a
fixed xf , and xi are all following lattice points. This proce-
dure will be referred to as a global averaging. The cutting
and shifting at every row y according to equation (11)
first and then projecting onto the x-axis and averaging
over runs afterwards will be called local averaging.

In Figure 5 the global averaged infection wave for
κτ = 6 on a 400 × 600 lattice and r = {1, 5, 10, 200} is
shown. The difference between the simulated wave forms
under global averaging and the results of the analytical ap-
proaches of Sections 3.2 and 3.3, plotted with solid curves,
is evident for all r both in the front form of the wave and
in the lower value of its maximum. The difference between
discrete and continuous description gets smaller with the
growth of the number of internal degrees of freedom (in-
dividuals per cell). This difference is caused by the kinetic
roughening [17] and gets much milder if the local averag-
ing procedure is applied.

If the results of the very same simulations are pro-
ceeded according to the local averaging procedure, the
shape looks like the one in Figure 6 for r = {1, 5, 10} and
as the one in Figure 7 for (r = 200). Solid lines represent
the analytical approaches of Sections 3.2 and 3.3 and the
excellent agreement for higher state numbers per point is
shown. The mismatch for smaller r is easy to understand
since the continuous approximation is only assumed to
work well for I(x) 
 1

r .
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Fig. 6. The shape of the infection wave for different numbers
of states per cell under local averaging, κτ = 6 for r = 1
(diamonds), r = 5 (crosses) and r = 10 (asterisks). The full
line is the PDE solution.

As a summary, we point out that kinetic roughening
leads to an broadening of the front of an epidemic wave,
but under local averaging the 1D continuous description
is still valid. Furthermore, the growth of the number of
individuals inside a cell leads to the convergence of the
discrete simulation results and the continuous functions
given by PDE system both for the wave’s shape and for
its velocity.

3 Analysis of PDE system
and its approximate solution

3.1 Infection wave in a comoving frame: separation
of variables

Let us now turn to the continuous description and consider
a stationary infection wave propagation. Changing to a
comoving frame x′ = x−vt, where v is the infection wave’s
propagation velocity, we get:

− v
dS

dx′ = −κSI − DS
d2I

dx′2 , (12)

−v
dI

dx′ = κSI + DS
d2I

dx′2 − 1
τ

I, (13)

−v
dR

dx′ =
1
τ

I. (14)

Let us show that the system of equations (12–14) allows
for a complete separation of variables. Using the fact that
S+I+R = 1 everywhere, one can rewrite equation (12) as

−v
dS

dx′ = −κS(1 − S − R) − DS
d2

dx′2 (1 − S − R).

Regrouping the variables, we get

v
dS

dx′ = κS(1 − S) − DS
d2S

dx′2 − S

(
κR + D

d2R

dx′2

)
. (15)
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Fig. 7. Same as in Figure 6, now for r = 200. The dashed and
the full lines represent the analytical approximations for the
wake and for the front of the wave.

Let us now return to equation (12), divide its both sides
by S, getting

v
d ln S

dx′ = κI + D
d2I

dx′2 (16)

and substitute I in the right-hand-side of this equation by
dR/dx′ according to equation (14):

v
d ln S

dx′ = −κτv
dR

dx′ − Dτv
d

dx′
d2R

dx′2 .

This last equation can be rewritten in a form

d

dx′

(
ln S + κτR + Dτ

d2R

dx′2

)
= 0.

This means that our initial system of equations possesses
an integral of motion

ln S + κτR + Dτ
d2R

dx′2 = C0 = const.

We note here that such an integral of motion exists also
for the initial system of equations (4–6), as it was pointed
out by Grassberger [10]. To determine the value of the
constant C0, consider the region x → ∞, far in front of
the infection wave. In this domain S = 1 (and lnS = 0)
and R = d2R

dx′2 = 0. Consequently, C0 = 0, so that

ln S + κτR + Dτ
d2R

dx′2 = 0. (17)

Now we can insert equation(17) into equation (15). As a
result, a closed equation for S emerges:

v
dS

dx′ = κS(1 − S) − DS
d2S

dx′2 +
1
τ

S ln S. (18)

If the solution of equation (18) is known, equation (17)
allows for finding R, after which the solution for I follows
from equation (14) or by using the fact that S+I+R = 1.

The corresponding equations for R and for I are re-
lated to the equation of motion of a harmonic oscillator
under an external forcing:

d2y

dx′2 + ω2y = F (x′). (19)

Here y is R or I, ω =
√

κ/D, and the external force
is F (x′) = −(Dτ)−1 ln S(x′) for y = R, and F (x′) =
v
D

d
dx′ (ln S(x′)) for y = I. The solution of this equation can

be obtained using the Fourier representation and reads:

y(x′) = Im

[
eiωx′

iω

(∫ x′

−∞
F (x′)e−iωx′

dx′ + y0(x′)

)]
,

where y0(x′) is a solution of the corresponding homoge-
neous equation, i.e. of equation (19) with F = 0.

3.2 Approximate solution: leading front

The leading edge of the front corresponds to the asymp-
totic exponential solution for very small I and has been
analyzed in [9], see also Section 2.3. Thus, we turn to the
main part of the front of the reaction wave, the one close
to the inflection point. In this part of the front the second
derivative in (18) is small and can be neglected. As we pro-
ceed to show this is a reasonable approximation describing
quite well the largest part of the front up to the maximum
of the infection wave. Since S is still close to unity in the
front of the infection wave, one can use the Taylor expan-
sion and put lnS = ln (1 − (1 − S)) � −(1 − S). Then
equation (18) takes the form

v
dS

dx′ = (κ − τ−1) S(1 − S).

Taking the velocity to be v = vmin = 2
√

D(κ − τ−1),
as following from the marginal stability principle, we get
the approximate equation for the part of the leading front
close to the inflection point in a form

dS

dx′ =
v

4D
S(1 − S). (20)

The solution to equation (20) reads:

S(x′) =
1
2

[
1 + tanh

( v

8D
(x′ − x′

0)
)]

, (21)

where x′
0 is an appropriate shift given by initial conditions.

To determine the shape of the infection leading front
for I, we use the conservation law I = 1 − S − R and the
integral of motion equation (17) for the determination of
R. Neglecting the term with the second derivative again,
we get a simple result for this region:

I(x′) = 1 − S(x′) +
1
κτ

ln S(x′), (22)

where S(x′) is the solution of equation (21).
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Fig. 8. The comparison of the numerical and analytical ap-
proximate solutions for the supercritical case, see the explana-
tion in the text.

Let us consider two numerical examples. The parame-
ters of the first one are taken from reference [9] and corre-
spond to the overcritical case leading to a strongly asym-
metrical Kendall wave: we namely take D = κ = 0.75,
τ = 15. Figure 8 represents the full numerical solutions for
S (light gray line) and for I (dark gray line) as well as the
approximations. The dash-dotted curves are the asymp-
totic exponential solutions for I from [9]. It is clear that
this approximation is valid only far in the leading edge
of the front. In the main front’s part one readily infers
that the approximate solution equation (22) practically
coincides with the numerical one over a sufficiently large
region of the front (black curve), from the domain where
the exponential asymptotics looses its accuracy up to the
point of maximum; the behavior of the approximations
outside this domain are shown with dotted lines. The ap-
proximation equation (21) shown with dashed black line
in the region where the approximation performs well (and
with the dotted line elsewhere) reproduces the numerical
solution for S (light-grey line) very well over the whole
region. Moreover, the transition area from S � 1 to the
S � 0 is close to the straight line, which confirms the
assumption that the second derivative is small.

Another example corresponds to a case close to crit-
icality: we still take D = κ = 0.75 but choose τ = 3.
Figure 9 shows, that the approximation is still quite ade-
quate over the whole front region up to the point of max-
imum. The coincidence of the exact numerical (dark gray
line) and approximate (black lines) solutions is however
somewhat worse than in the supercritical case.

3.3 Approximate solutions in the wake of the infection
wave

Let us consider now the wake (rear tail) of the infection
wave. At difference with the description of the leading
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Fig. 9. The comparison of the numerical and analytical ap-
proximate solutions for the near-critical case, see the explana-
tion in the text.

front, the critical and supercritical conditions need various
approximations, which fact is connected to the strongly
different densities of susceptible population behind the
wave in these cases. Namely, in the case of short recov-
ery time which is characteristic for the situation close to
criticality, the region behind the front contains relatively
large amount of the individuals which have never been in-
fected. This is mirrored by the flat non-zero tail in Figure 9
(light gray line).

The density of never infected population can be found
as follows: consider the invariant equation (17). Far in the
tail of the wave the density of infected vanishes, and the
densities of removed and of susceptible reach their limiting
values: I = 0, R = R− = const, and R− + S− = 1.
Therefore, the invariant equation (17) takes the form

ln S− + κτ(1 − S−) = 0 or S− = eκτ(S−−1). (23)

This transcendental equation has the solution

S− = −W (−S0κτ exp(−κτ))
κτ

(24)

where W (z) is the so-called Lambert-function, the solu-
tion of z = W eW .

The exponential asymptotics for this case can
be easily derived by taking S(x′) = S− + s(x)
(with s(x) � S−) in (18) and subsequent lineariza-
tion of the equation for s(x′). Using the expansion
ln S = ln (S−(1 + s/S−)) = lnS− + s/S− and the first
form of equation (23) we get the linearized equation

DS−
d2s

dx′2 + v
ds

dx′ +
(

κS− − 1
τ

)
s = 0. (25)

As usual, the exponential substitution s(x′) = exp(γx′)
leads to the characteristic equation

DS−γ2 + vγ + κS− − 1
τ

= 0,
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which has the roots

γ = − v

2DS−
±

√(
v

2DS−

)2

− κS− − 1/τ

DS−
. (26)

Only the positive solution has a physical meaning, since
S is increasing function of x′. The full function S =
S− + CS exp(γx′), where CS is an appropriate constant,
is drown in Figure 9 as the black curve. As above, the
dependence for I(x′) is given by equation (22). The corre-
sponding curve is represented in Figure 9 as the black one.
This solution approximates the numerical one (dark grey
curve) quite satisfactory up to the maximum of the infec-
tion wave where it meets the front approximation consid-
ered in Section 3.2.

In the supercritical case the approach considered above
is no more applicable since the fast growing s(x) gets large
compared to S−. However, here S itself is quite small so
one can neglect both the quadratic term and the second
derivative in (18) and gets

dS

dx′ =
κ

v
S +

1
vτ

S ln S.

Dividing both sides of this equation by S gives us a linear
equation for lnS:

d

dx′ ln S =
κ

v
+

1
vτ

ln S. (27)

Taking an exponential of the solution of equation (27), we
get the approximation for the function S for large nega-
tive x′:

S(x′) = exp
(

C exp
(

x′

vτ

)
− kτ

)
, (28)

where C is a constant. The solution for the tail of the
infection wave is obtained by substitution of (28) into (22).
The results for S and for I are given in Figure 8 and show
the good performance of the approximation in the whole
wake region of the infection wave.

4 Summary

We have considered the spread of a contact infection fol-
lowing the SIR scheme through an immobile population.
Both deterministic macroscopic (PDE) and stochastic mi-
croscopic (Monte-Carlo) approaches are applied.

It is shown, that the continuous description is not
valid for small numbers of cell’s states. The results of
Monte-Carlo simulations also reveal the conditions of
applicability of the PDE approach, which works if elemen-
tary “points” of continuous field equations correspond to
cells having a large enough number of internal states (con-
siderable local population density). Note, that the quite
satisfactory description of the infection spread among the

harbor seals in [9] was based on the consideration of an-
imal’s groups with strong mixing within a population lo-
cated in one site and the infection transmission between
sites only via contacts between individuals performing rare
relatively long trips, so the data was fitted for real-life
examples.

Last but not least, it should be pointed out that the
corresponding partial differential equations allow not only
asymptotic but full-range approximate analytical consid-
eration. The obtained closed-form approximations fit the
numerical solution for the critical as well as supercriti-
cal cases. This fact opens the opportunity for the con-
tinuous analysis of more complicated situations like an
epidemic spread through multi-species metapopulations.
Recently, this class of equations was successfully applied
to the mean-field description of growth of kinetic aggre-
gates – two-color DLA [18].
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